
Use of pretrained models should always be a first consideration when 
developing new deep learning models, as the need to isolate common 
features is eliminated.

In the two plots from the left-hand side we present the accuracy and 
loss during training of the mammography model with and without 
pretraining. This (solid line) provides a much smoother loss profile and 
faster time to high accuracy vs. the model that was not pretrained. Use 
of existing models should always be a first consideration when 
developing new deep learning models, as the need to isolate common 
features is eliminated.

In order to obtain the desired accuracy, when picking an existing 
checkpoint, we do not pick the last one. We start with the learning rate 
at which the model was training when the checkpoint was saved. We 
also perform gradual warmup of the learning rate, proportional to the 
global batch size. 

Our code is developed in Tensorflow and we pack the data in the TF 
Records format so that it can be efficiently consumed asynchronously 
with the computation. Horovod was then added to parallelize the 
training.

We have also compared the efficiency of our Tensorflow implementation with a Keras-Tensorflow one. For our architecture 
and dataset, we've noticed the Tensorflow-only code is approximately 4 times faster when doing a 128 node run, distributed 
with Horovod.

All our experiments have been performed on Dell EMC's Zenith cluster. An image from the Dell EMC HPC and AI innovation 
lab can be found below.

Horovod uses the Ring-AllReduce approach to distributed deep learning, which take a single-
program, multiple-data (SPMD) model approach to the parallelization process, using MPI for 
communications. 

Each MPI process has a unique copy of the network being trained. Each process looks at a slice 
of the training data, and exchanges gradient information using the MPI_AllGather operation. 
Loss information is aggregated using MPI_AllReduce.
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In all these experiments we used a variant of the cyclic learning rate, 
plotted in the figure on the left-hand side. 

The learning rate is increased and decreased in several cycles. Each 
learning rate inflection point is half of the previous value. The number 
of cycles determine final accuracy. 

This technique ensures that overfitting is reduced, while diversity is 
obtained from the learning rate variation. This could be expressed also 
as inside model transfer learning.

Plot showing category accuracy using all the tested architectures
The figure above shows the scaling behavior for ResNet-50. Since the other 
architectures have more computational demands, the scaling performance is 
better in their case. Even in the case of ResNet-50, we can observe that by 
using 256 nodes, the total time required to obtain a trained model is reduced 
by 187 times.
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Methodology

In recent years, the healthcare industry has been moving towards fully 
digitized workflows. This facilitates the adoption of artificial intelligence 
algorithms, particularly in cases where medical doctors do not reach a 
consensus. The final goal of these algorithms is to support decision making and 
help with standardization. Therefore obtaining high quality models that can be 
quickly trained, becomes critical for this industry. In this poster we present our 
findings for training three different high accuracy artificial neural network 
models for identifying pneumonia, emphysema, and a host of other lung 
afflictions. This was done on a dataset released by NIH Clinical Center, 
containing over 100,000 chest x-ray images from more than 30,000 patients and 
14 different pathologies.

Emphysema is estimated to affect more than 3 million people in the U.S., and 
more than 65 million people worldwide. Severe emphysema is life threatening, 
and early detection is important to try to halt progression. Pneumonia affects 
more than 1 million people each year in the U.S., and more than 450 million 
each year worldwide. Every year, 1.4 million people die from pneumonia 
worldwide.

Scale-out, large-batch training is an effective way to speed up neural network training on unaccelerated Intel® Xeon® 
platforms. We have shown in this work that we can efficiently leverage supercomputing infrastructures to train models 
going from moderate scale (e.g. DenseNet), all the way to large, highly accurate models (e.g. large AmoebaNets). 

After experimenting with the original DenseNet-121 model and making sure we reach a reasonable baseline, we decided to 
also evaluate the performance of the very popular ResNet-50 topology. This allowed us improve the mean AUROC from 
0.819 to 0.826, a result achieved in similar training time. In order to better extract the details from the ChestXray-14 images 
that are of higher resolution (1024x1024),  we have designed an upscaled version of ResNet-50, called ResNet-59. This 
improved accuracy on ImageNet-1K from around 76% to 78%, but more importantly improved the mean AUROC on 
ChestXray-14 from 0.826 to 0.838.

Our next milestone was switching from the residual network architecture to some of the more modern topologies. We chose 
to experiment with AmoebaNets, since they currently hold the state-of-the art accuracy in various vision tasks. When 
training a large AmoebaNet model (168 million parameters), we managed to obtain a mean AUROC of 0.842, significantly 
better compared to the DenseNet-121 baseline, outperforming it in all 14 different pathologies. 

For all used network topologies, we first perform a full training run using the ImageNet dataset, followed by transfer 
learning on the target ChestXray-14 dataset. All training runs are performed using large batches and 128-256  Intel® Xeon®-
based compute nodes, showing that the methodology for performing large-batch training at scale applies to both training 
from scratch and to transfer learning. 

Transfer learning and fine tuning approaches are an intelligent way of improving the time-to-solution of models trained on 
moderate-scale datasets, as reaching the accuracy targets typically significantly fewer training iterations. Fine tuning models 
already trained on ImageNet (or even other datasets) should be the default approach for those beginning a deep learning 
project for image classification. 

Although we have significantly improved over the base DenseNet model, we still see that the predictive performance of our 
best performing models reaches a plateau. 

We believe that one option to further improve on the validation accuracy of such a system is to perform additional data 
augmentation in order to alleviate the inherent class imbalance. 

We plan to tackle this problem by using class-condit ional generative adversarial networks that have the potential to balance 
the class distribution in the dataset. With this augmented dataset we plan to re-train the large-input models and expect to 
reach even higher accuracy levels.

Furthermore, we want to apply the methodology presented in this work to other medical datasets, with a close eye on 
comparing the feature transferability of ImageNet-pretrained networks against ChestXray-14 pretrained networks on the 
same target medical datasets. This future work will aim to offer practitioners from the medical diagnostic fields the best 
practices for applying deep learning techniques to medical imaging data.

The original ChestXray-14 images are of size 1024x1024, but general practice is to downsample the input images to 224x224 to 
fit the input layer of traditional ImageNet-pretrained models. Our approach is to utilize as much of the available information 
as possible, so we experiment with larger than common practice inputs. We compare this approach with models featuring a 
large number of trainable parameters as well as state-of-the-art architectures used for generic image recognition tasks.

In our current work we have focused on three different Convolutional Neural Network designs. The first one is a standard ResNet-50. In our previous 
research this proved to be superior to other Neural Network designs such as DenseNet for classification tasks. 

ResNet-59 is a natural evolution of ResNet-50 when increasing the input size to 1024x1024 pixels. This architecture features an additional of a stride-2 
convolution in the second residual block an increased number of layers in order to deal with the extra from the input layer. This leads to 
approximately four times more trainable parameters than in the standard architecture. For example, when using a batch size of 64, the memory 
footprint of the model is 43 GB. This model was trained only for 60 epochs on our teacher training set, ImageNet-1k, reaching a top-1 accuracy of 78% 
and a top-5 accuracy of 94%, with a global batch size of 10240, using 256 nodes.

The AmoebaNet-D architecture is automatically discovered and we have trained two flavors of it. One with 299x299 input, the other with 480x480 
input. In the both cases, the input layers have less neurons than ResNet-59. In the first case, the total number of trainable parameters is also smaller 
than for ResNet-59. The table below contains a finetuning comparison between the three architectures in terms of throughput, memory consumption 
and approximate training time when using 256 nodes. Also below we have plotted the mean Area Under the Curve for all these architectures, 
including the baseline offered by DenseNet-121.
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Stanford University researchers originally developed the CheXNet model by fine-tuning a 121-layer DenseNet topology 
originally trained on the ImageNet dataset. The data for fine tuning the model came from the U.S. National Institute of Health 
(NIH) ChestXray-14 dataset.
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