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While classical FEM are widely used and well-suited for a large number of This is a joint work with N. Sukumar (UC Davis) and John Pask (LLNL)

applications, they have a few shortcomings:

= Grid handling is expensive Domain

= Approximation problems: Consider Q C R a parallelepiped unit cell with primitive
crack modeling lattice vectors a, £ € {1,2,3}, i.e.

singularities in solution (1 = C0nV{31, a2, 33}7

trical singulariti
geometrical singularities with six faces with |J, (T, U (Ie +a¢)) =T, ¢ € {1,2,3}

= No possibility to insert a-priori knowledge about physics of problem into

computation The one-electron Schrodinger equation
= |n general: no arbitrary approximation spaces —%V2¢(X) + V(x)¥(x) = eb(x) in £,
= Methods that address these issues: Generalized FEM, Extended FEM, EFE, Y(x + ag) = exp(ik - ag)(x) on Ty,
PUFEM,... Vip(x + as) = exp(ik - a))Vi(x) on Iy

Calculations on triclinic unit cells

Flat-Top PUM
; TN

The flat-top Partition of Unity Method (PUM) can be understood as a (very) <.~
generalized, meshfree variant of FEM. DI

Partition of Unity Space Q2
= Partition of unity (PU) {SOI} with Figure: Schematic representation of the transformation At : Q — Q. This (linear)
Wj 1= supp(gpi) transformation can be represented by the matrix At = (a1, @, a3), whose column vectors are the
= Smooth splicing of local spaces primitive lattice vectors a4, d = 1,2, 3 of Q.

N N
i P VY= iVilwi) = (P + &) . . C e .
/ Xgp ¥ J\ ;gp i) §¢( ) Model problem: Gaussian Potential on a triclinic unit cell
Wi W = Approximation by Vi(wj;), functions ¢; just Let Q = conv(ay, ay, a3) with
) glue”. a; = a(1,0.02, —0.04), a, = a(0.06,1.05, —0.08) and a3 = a(0.10, —0.12, 1.10),
Pr & Enrichments &, | |
. . with lattice parameter a =5 and 7 = 31“22“3.

= Can be any general functions . . .
Y& The Gaussian potential is defined as

| | = Chosen to match physics of the problem
Stablilization V(x) =) Ve(lx —7 — R|).
R

= Restrictions of enrichment functions can cause stability problems on local

with
patches r2
= Couplings of polynomials and enrichment functions can also be ill-conditioned Vg(r) = —10exp ( 2.25>
= |n the flat-top PUM, we overcome these stability issues by constructing a and we want to solve .
stability transformation 2 _ :
—— + VY =¢e1 in
VA + Vip = ey

= This is achieved by partial orthogonalization wrt. a chosen inner product. _ o o _
with Bloch-periodic boundary conditions (wave vector k = (0.12,0.23,0.34) in

.. . reciprocal lattice coordinates).
Variational Mass Lumping P )

= In the flat-top PUM, we are also able to construct a localized mass matrix and
thus have a variational mass lumping approach

Numerical Results

degrees of freedom

= This construction is independent of local spaces (arbitrary enrichments, order) T T T [
= We derive a block-diagonal, symetric positive definite matrix M o | |2t
—— (p=2+elre)
= Lo o) Results were obtained on the
E 10-3 - Drachenfels cluster at Fraunhofer
PU MA ft f k 2 I ¢ SCAI, on 4 computational nodes
e R PR (Intel® Xeon® CPU E5-2650 v2 @
= 107 |- - .

. . 2.6GHz nodes with 16 h).
= C+-+ implementation of flat-top PUM o 7 2 nodes with 16 cores each)
= Parallelized using MPI 107 | 5 -
= Provides possibility to use your own enrichment functions L L

degrees of freedom

= Accessible through Python interface Figure: Convergence history of the lowest eigenvalue \; for the gaussian oscillator potential

Avplcation o araviow Plugin S UMA User Applcations attained for different refinement schemes. We consider a purely polynomial approximation
_______________ S —— — (p =1,2,3) on a sequence of uniformly refined covers, which shows the expected 2p-convergence
o PaUnT Pyor GEGO Pyon Front rates (see [1]). Furthermore, we consider a refinement by increasing the enrichment radius with a
Interface End . . . . . .
________________ l ________i____ single enrichment function on a fixed uniform cover (4 X 4 x 4 and 8 x 8 x 8) that is labeled by
s p=12 3+ e r.,, where we observe spectral convergence.
Core g| PaUnTC++ [ 8] | GECO C++Back-
) % Core gg’fmf l End e
° : Conclusion
Figure: Components of the PUMA software framework = Employing enrichment functions drastically reduces number of necessary DOFs

= We overcome problems of enriched FEM like instability and the need to solve
a general EVP
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= Compute larger and more realistic quantum mechanical problems (more
atoms, full DFT-loop implementation)
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