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Flat-top Partition of Unity Method: Motivation

While classical FEM are widely used and well-suited for a large number of
applications, they have a few shortcomings:
� Grid handling is expensive
� Approximation problems:

� crack modeling
� singularities in solution
� geometrical singularities

� No possibility to insert a-priori knowledge about physics of problem into
computation

� In general: no arbitrary approximation spaces
� Methods that address these issues: Generalized FEM, Extended FEM, EFE,

PUFEM,...

Flat-Top PUM

The flat-top Partition of Unity Method (PUM) can be understood as a (very)
generalized, meshfree variant of FEM.
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Partition of Unity Space
� Partition of unity (PU) {ϕi} with
ωi := supp(ϕi)

� Smooth splicing of local spaces

V PU :=
N∑
i=1

ϕiVi(ωi) =
N∑
i=1

ϕi(Ppi + Ei).

� Approximation by Vi(ωi), functions ϕi just
“glue”.

Enrichments Ei
� Can be any general functions
� Chosen to match physics of the problem

Stablilization
� Restrictions of enrichment functions can cause stability problems on local

patches
� Couplings of polynomials and enrichment functions can also be ill-conditioned
� In the flat-top PUM, we overcome these stability issues by constructing a

stability transformation
� This is achieved by partial orthogonalization wrt. a chosen inner product.

Variational Mass Lumping
� In the flat-top PUM, we are also able to construct a localized mass matrix and

thus have a variational mass lumping approach
� This construction is independent of local spaces (arbitrary enrichments, order)
� We derive a block-diagonal, symetric positive definite matrix M̄

PUMA software framework

� C++ implementation of flat-top PUM
� Parallelized using MPI
� Provides possibility to use your own enrichment functions
� Accessible through Python interface

Figure: Components of the PUMA software framework
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Application: The Schrödinger Eigenproblem

This is a joint work with N. Sukumar (UC Davis) and John Pask (LLNL)

Domain
Consider Ω ⊂ R3 a parallelepiped unit cell with primitive
lattice vectors a`, ` ∈ {1, 2, 3}, i.e.

Ω = conv{a1, a2, a3},
with six faces with

⋃
` (Γ` ∪ (Γ` + a`)) = Γ, ` ∈ {1, 2, 3}
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The one-electron Schrödinger equation
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2ψ(xxx) + V (xxx)ψ(xxx) = εψ(xxx) in Ω,
ψ(xxx + a`) = exp(ı̇kkk · a`)ψ(xxx) on Γ`,
∇ψ(xxx + a`) = exp(ı̇kkk · a`)∇ψ(xxx) on Γ`

Calculations on triclinic unit cells
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Figure: Schematic representation of the transformation AT : Ω −→ ΩT. This (linear)
transformation can be represented by the matrix AT = (a1,a2,a3), whose column vectors are the
primitive lattice vectors ad , d = 1, 2, 3 of ΩT.

Model problem: Gaussian Potential on a triclinic unit cell

Let Ω = conv(a1, a2, a3) with

a1 = a(1, 0.02,−0.04), a2 = a(0.06, 1.05,−0.08) and a3 = a(0.10,−0.12, 1.10),

with lattice parameter a = 5 and τττ = a1+a2+a3

2 .
The Gaussian potential is defined as

V (xxx) =
∑
R

Vg(|xxx − τττ − R |),

with

Vg(rrr) = −10 exp

(
− rrr 2

2.25

)
and we want to solve
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2
∇2ψ + Vψ = εψ in Ω

with Bloch-periodic boundary conditions (wave vector kkk = (0.12, 0.23, 0.34) in
reciprocal lattice coordinates).

Numerical Results

Results were obtained on the

Drachenfels cluster at Fraunhofer

SCAI, on 4 computational nodes

(Intelr Xeonr CPU E5-2650 v2 @

2.6GHz nodes with 16 cores each).

Figure: Convergence history of the lowest eigenvalue λ1 for the gaussian oscillator potential
attained for different refinement schemes. We consider a purely polynomial approximation
(p = 1, 2, 3) on a sequence of uniformly refined covers, which shows the expected 2p-convergence
rates (see [1]). Furthermore, we consider a refinement by increasing the enrichment radius with a
single enrichment function on a fixed uniform cover (4× 4× 4 and 8× 8× 8) that is labeled by
p = 1, 2, 3 + e ↑ re, where we observe spectral convergence.

Conclusion
� Employing enrichment functions drastically reduces number of necessary DOFs
� We overcome problems of enriched FEM like instability and the need to solve

a general EVP

Future work

� Improve parallel integration scheme for enrichment functions, explore use of
hybrid parallelization

� Optimize eigenvalue solver
� Compute larger and more realistic quantum mechanical problems (more

atoms, full DFT-loop implementation)
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