
OpenFPM for scalable
particle-mesh codes on CPUs and GPUs

References:

Time to complete 1.5 seconds Dam break simulation

OpenFPM

DualSPH

0

250

500

750

1,000

Dam break

Performance:

The project is open source and available at:

openfpm.mpi-cbg.de

1. P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, I. F. Sbalzarini, OpenFPM: A scalable open framework for particle
and particle-mesh codes on parallel computers, arXiv:1804.07598, Comput. Phys. Commun. (in print), 2019.

2. I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and P. Koumoutsakos. PPM – A Highly Efficient
Parallel Particle-Mesh Library for the Simulation of Continuum Systems, J. Comput. Phys. 215(2):566-588, 2006.

3. S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon, I. F.Sbalzarini, A language and development environment for
parallel particle methods, in: International Conference on Particle-based Methods – Fundamentals and Applications,
Hanover, Germany, 2017, pp. 1–12.

4. I. F. Sbalzarini. Abstractions and middleware for petascale computing and beyond. Intl. J. Distr. Systems & Technol.,
1(2):40–56, 2010.

5. S. Karol, T. Nett, J. Castrillon, and I. F. Sbalzarini. A domain-specific language and editor for parallel particle methods.
ACM Trans. Math. Softw., 44(3):34, 2018.

Pietro Incardona[1,2], Ivo F. Sbalzarini[1,2,3]
[1] Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, Germany 
[2] MOSAIC Group, Center for Systems Biology Dresden, Germany 
[3] Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

1 5 10 50 100
0

25

50

75

100

Number of cores

E
ffi

ce
nc

y
%

0.32

0.028

0.003

Time to complete 1.5 seconds Dam break simulation

OpenFPM

DualSPH

0

250

500

750

1,000

Dam break

Introduction:

particles mesh

NEW: Multi-(CPU/GPU) support:

1 2 4 8 16 24 48
0

50

100

150

200

Number of cores

W
al

l-c
lo

ck
 ti

m
e

(s
)

Time to complete LAMMPS and OpenFPM

OpenFPM

LAMMPS

1 4 8 16 24 48 96 192 384 768 1536
1

10

100

1,000

Number of processor

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

0

100

200

300

400

Number of cores

S
im

ul
at

io
n

w
al

l-c
lo

ck
 ti

m
e

(s
)

In blue we show the performance of OpenFPM, in red we compare with other
frameworks. top-middle: LAMMPS, top-right: AMReX, bottom-left: DualSPH

vd.deviceToHostPos()
vd.map(RUN_ON_DEVICE);
vd.ghost_get<>(RUN_ON_DEVICE);

auto NN = vd.getCellListDevice(0.1);

auto kernel = [](Point<2,double> & p, Point<2,double> & q) -> Point<2,double>
{return (xp - xq) / norm2(xq - xp) * exp(- norm2(xq - xp) / 0.03)}
auto Force = getV<0>();
Force = applyKernel_in(vd,NN,kennel);

Non-kernel based: (Multi-CPU)

kernel based: (Multi-CPU/GPU)

Vectorized (like Matlab, numpy): CPU/GPU

vd.deviceToHostPos()
vd.map(RUN_ON_DEVICE);
vd.ghost_get<>(RUN_ON_DEVICE);

auto NN = vd.getCellListDevice(0.1);

auto it = vd.getDomainIteratorDevice()

KERNEL_LAUNCH(calc_forces,ite.wthr,ite.thr,vd.toKernel(),NN.toKernel())

template<typename vector_type, typename NN_type>
__global calc_forces(vector_type vd, NN_type NN)

	 {

 	 	 auto p = GET_PARTICLE(vd);

 	 	 Point<2,double> xp = vd.getPos(p);

 	 	 Point<2,double> force_tot({0.0,0.0});

 	 	 auto NN_it = NN.getNNIterator(NN.getCell(xp))

 	 	 while (NN_it.isNext())

 	 	 {

 	 	 auto q = NN_it.get();

 	 	 Point<2,double> xq = vd.getPos(q);

	 	 force_tot += (xp - xq) / norm2(xq - xp) * exp(- norm2(xq - xp) / 0.03)

 	 	 ++NN_it;

 	 	 }

 	 	 vd.getProp<0>(p)[0] = force_tot.get(0);

 	 	 vd.getProp<0>(p)[1] = force_tot.get(1);

	 }

Serial/algorithm instructions

Parallelization multi-CPU/GPU instructions

Accelerator/GPU instructions

Discrete element simulation, Silbert grain model Gray-Scott Reaction-Diffusion model  
Finite difference stencil code

Smoothed-particle hydrodynamics, Dam break simulation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

#cores/socket: 1 2 4 8 12
memory GB/s per core: 14.7 10.8 10.0 8.3 5.0

Table 1: Memory bandwidth per core on the benchmark machine when using di↵erent numbers of cores all on the same
processor socket.

Figure 5: Visualization of the particle configurations at the start of the simulation (left) and after 5000 time steps (right)
for the Lennard-Jones molecular dynamics test case. The system is thermally equilibrated after 1000 time steps. In this
example, a decomposition into four sub-domains is used, indicated by di↵erent colors. Each particle is plotted as a dot
with the color of the respective sub-domain.

On the benchmark machine, each processor (socket) has its own, independent memory bus.
The cores within each processor, however, share the memory bandwidth. The results of a con-
current memory-read benchmark are shown in Table 1. The per-core memory bandwidth reduces
from 14.7 GB/s when using only 1 core to 5.0 GB/s when using all 12 cores of a processor in
parallel. This synthetic benchmark shows that when using 8 cores per socket, the memory bus of
the machine saturates at about 97.6% of its theoretical peak bandwidth.

4.1. Molecular dynamics
We first consider a classical Molecular Dynamics (MD) application simulating a Lennard-

Jones fluid. In this simulation, particles represent atoms that interact according to the pairwise
Lennard-Jones potential:

VLJ(r) = 4✏
"✓�

r

◆12
�
✓�

r

◆6#
(3)

as a function of the distance r between the two interacting particles. The parameters � and ✏
define the zero-crossing and the well depth of the potential, respectively. We implement the sim-
ulation in OpenFPM using OpenFPM’s implementation of Verlet lists [49] for the particles to
e�ciently find their interaction partners. We exploit symmetry in the interactions, i.e., we com-
pute every interaction pair only once. This also requires changing the values of ghost particles,
for which we use OpenFPM’s ghost put() mapping (see Section 3.4).

We compare the OpenFPM-based implementation with LAMMPS [30], a well-established
and highly optimized parallel MD code. We start the simulation with 216,000 particles initialized
on a regular Cartesian 603 mesh. This initial particle configuration is shown in the left panel of
Fig. 5 for a Cartesian domain decomposition with four sub-domains indicated by di↵erent colors.

14

Molecular Dynamics, Lennard-Jones potential

Number of cores
Number of cores

Number of cores

Ru
nt

im
e

se
co

nd
s

Ru
nt

im
e

se
co

nd
s

Pa
ra

lle
l E
ffi

ci
en

cy
 %

Ru
nt

im
e

se
co

nd
s

* Time to complete one time step
*

*

*

OpenFPM DualSPH

1) Reduce development times for parallel numerical simulations from years to days [4].
2) Make HPC more accessible to computational scientists without parallel programming expertise [4].
3) Improve portability and reproducibility of numerical simulations in scientific computing [5].
4) Provide a successor for the classic PPM library (Fortran95, [2]) that uses modern software engineering

principles and relaxes PPM’s most salient limitations.
5) Enable transparent accelerator programming using domain-level abstractions [4]. Fig 4: Runtime adaptive domain decomposition continuously

adjusts the data distribution (example: SPH dam break, see below).

Fig 2: Example of particle (left) and mesh (right) data structures distributed across 3 processes in 2D.

Project Goals:

Fig 3: Sketch of the domain decomposition of the
data structures from Fig. 2. In OpenFPM, the
simulation domain is first divided into sub-sub-
domains (small squares). From that, a
communication adjacency graph is created and
partitioned into subgraphs using the METIS graph-
decomposition library. Sub-sub-domains are then
merged to larger sub-domains (bold lines) in order
to reduce data fragmentation. Communication
between neighboring processes is handled by
ghost layers (a.k.a. halo layers) around each set of
subdomains assigned to the same processor
(shaded areas shown for the red processor).

OpenFPM provides scalable distributed and parametric data-structures using C++
Template Meta Programming. Code targeting to different hardware platforms (CPU/GPU/
Accelerators) is transparently supported for particle and mesh methods (see examples on the
left). All data-structures can be used in arbitrary dimensions and particles/meshes (Fig. 2)
can store scalars, vectors, and tensors of any rank and any custom data type (i.e., any C++
class). OpenFPM automatically distributes the data structures across multiple machines by
decomposing the simulation domain (Fig. 3). It provides transparent communication
abstractions, remote information query, and dynamic runtime load balancing (Fig 4).

Fig 1: OpenFPM [1] is a general-purpose software platform for scalable parallel numerical
simulations using particle and particle-mesh methods. Client codes (top row) from various
application domains, from biology over image processing to fluid mechanics, access the
distributed data structures of the OpenFPM core and the numerical solvers of OpenFPM-
numerics via standardized APIs. C++ Template Meta Programming is used for compile-time
code targeting to different hardware platforms.

Benchmarks:

Box<2,double> domain({0.0,0.0},{1.0,1.0});
Ghost<2,double> ghost(0.1);
size_t bc[2] = {NON_PERIODIC,NON_PERIODIC};

vector_dist<2,double,aggregate<double[2]>> vd(1000,domain,bc,ghost);

auto it = vd.getDomainIterator()
while (it.isNext())

{

 auto p = it.get();

 vd.getPos(p)[0] = rand() / RAND_MAX;

 vd.getPos(p)[1] = rand() / RAND_MAX;

 ++it;
}

vd.map();
vd.ghost_get<>();

auto NN = vd.getCellList(0.1);

auto it = vd.getDomainIterator()
while (it.isNext())

{

 auto p = it.get();

Point<2,double> xp = vd.getPos(p);

Point<2,double> force_tot({0.0,0.0});

auto NN_it = NN.getNNIterator(NN.getCell(xp))

while (NN_it.isNext())

{

 auto q = NN_it.get();

 Point<2,double> xq = vd.getPos(q);

 force_tot += (xp - xq) / norm2(xq - xp) * exp(- norm2(xq - xp) / 0.03)

 ++NN_it;

}

 vd.getProp<0>(p)[0] = force_tot.get(0);

 vd.getProp<0>(p)[1] = force_tot.get(1);

 ++it;
}

Methodology / Approach:

Timeline / Roadmap:

LEFT: Code example to show a particle calculation on different types of hardware. The first loop
initializes the particles at random positions using a particle domain iterator. The colored part of
the code is shown in three variants: distributed-memory parallelism without kernels (multi-CPU),
kernel-based code akin to CUDA, and a kernel-free accelerator version using lambda
expressions and template parsing to enable direct mathematical input instead of loops. Color
codes are according to the legend below:

2014 9/2017

Multiresolution 
methods

Release 1.0  
multi-CPU

project  
start

Compiler/DSL [3] 
In-situ AR/VR

2/2019 2020 2022

OpenPME page 7 of 20

Figure 2: Layers in the original PPM(L) stack.

OpenFPM core OpenFPM numerics

C++ Template Metaprogramming

Open Particle Mesh Environment (OpenPME)

Distributed memory
Shared memory

GPUs
Vector processors

DSL optimizer and code generator

Figure 3: Layers in the envisioned OpenFPM/
OpenPME stack.

The original PPM programming stack is shown in Figure 2. It is an object-oriented architecture [ADS10] with
support for mixed multi-processing/multi-threading on heterogenous multi-core platforms [AS14], as well as support
for GPU acceleration for the critical particle-mesh and mesh-particle interpolation steps in hybrid particle-mesh
methods [BAS13]. The PPM Library is organized into a core and a numerics part. The core provides the parallel
data structures for particles and meshes, adaptive domain-decomposition schemes, communication mappings,
and dynamic load-balancing methods. The numerics part implements frequently used numerical solvers [SWB+06],
such as FFTs (by wrapping FFTW), multi-grid solvers, and linear systems solvers (wrapping PETSc). The numerics
module is partly implemented using the abstractions provided by the core, and partly wraps existing third-party
libraries. The core is based on MPI as the communication interface, but transparently hides it from the application.
Applications (called “PPM clients”, symbolized by the simulation visualizations on top) are written using a mixture of
direct API calls to the PPM core and/or numerics modules, and PPML DSL statements. This makes use of PPML’s
embedding into Fortran2003.

PPM and PPML in their present form have several limitations. The implementation in Fortran2003 prevents
use on emerging hardware platforms, such as Parallela or HAEC (SFB 912), where Fortran2003 compilers are
not usually available. Moreover, most Fortran2003 compilers do not implement the full language standard or use
vendor-specific extensions, hence hampering code portability. Functionally, PPM is limited to particle-mesh meth-
ods in 2D and 3D, preventing its use for parameter optimization, image processing, and other higher-dimensional
applications. Most importantly, Fortran uses static memory layout for all data structures, and the PPM API is man-
ually overloaded to a limited set of data types that could be foreseen at design time. This prevents the framework
from being generic to different hardware platforms and also does not allow particles to carry arbitrary objects.
The Sbalzarini group hence started designing a successor of PPM in 2014 in a project termed “OpenFPM” (Open
Framework for Particles and Meshes). OpenFPM is based on the same proven abstractions as PPM [Sba10],
but implemented in C++ using full templating and template metaprogramming (TMP). It is generic to arbitrary-
dimensional spaces and allows particles to carry arbitrary objects and types. The TMP layer, together with a
built-in memory manager, also decouples the semantics of any data structure from its physical memory layout,
hence providing compile-time targeting to different hardware platforms. This is illustrated in the lower stack levels
of Figure 3. Currently, a numerics part for OpenFPM is missing, and also a DSL and development environment
are missing. These are the focus of the present project. Hence, the upper part of the figure shows the envisioned
development environment providing a high-level DSL and advanced editing features to end-users. The code gener-
ator of the DSL emits well-formed and optimized C++ code that links with the library. The new architecture provides
a clearer separation between the DSL language, OpenFPM, and the compile-time targets.

Prof. Ivo Sbalzarini also works on the theory and algorithms for particle methods. This included DC-PSE
(mentioned in Section 1.0.1), providing a unifying theory for collocation methods that is fully consistent for arbitrary
linear differential operators on any distribution of particles. This in particular made it possible for particles to self-
organize at runtime, such as to dynamically adapt their number and spatial distribution to developing simulation
[RSS12]. Recently, this has been extended to anisotropic particles that self-organize, further reducing the number
of particles needed to reach a given solution accuracy [HRS15]. Performance models can predict the computational
cost and accuracy of different schemes and enable auto tuning [SRS12]. Moreover, boundary conditions have
traditionally been a problem in particle methods, which has been alleviated by a general framework to impose
arbitrary boundary conditions directly on particles [FDS13].

OpenPME page 7 of 20

Figure 2: Layers in the original PPM(L) stack.

OpenFPM core OpenFPM numerics

C++ Template Metaprogramming

Open Particle Mesh Environment (OpenPME)

Distributed memory
Shared memory

GPUs
Vector processors

DSL optimizer and code generator

Figure 3: Layers in the envisioned OpenFPM/
OpenPME stack.

The original PPM programming stack is shown in Figure 2. It is an object-oriented architecture [ADS10] with
support for mixed multi-processing/multi-threading on heterogenous multi-core platforms [AS14], as well as support
for GPU acceleration for the critical particle-mesh and mesh-particle interpolation steps in hybrid particle-mesh
methods [BAS13]. The PPM Library is organized into a core and a numerics part. The core provides the parallel
data structures for particles and meshes, adaptive domain-decomposition schemes, communication mappings,
and dynamic load-balancing methods. The numerics part implements frequently used numerical solvers [SWB+06],
such as FFTs (by wrapping FFTW), multi-grid solvers, and linear systems solvers (wrapping PETSc). The numerics
module is partly implemented using the abstractions provided by the core, and partly wraps existing third-party
libraries. The core is based on MPI as the communication interface, but transparently hides it from the application.
Applications (called “PPM clients”, symbolized by the simulation visualizations on top) are written using a mixture of
direct API calls to the PPM core and/or numerics modules, and PPML DSL statements. This makes use of PPML’s
embedding into Fortran2003.

PPM and PPML in their present form have several limitations. The implementation in Fortran2003 prevents
use on emerging hardware platforms, such as Parallela or HAEC (SFB 912), where Fortran2003 compilers are
not usually available. Moreover, most Fortran2003 compilers do not implement the full language standard or use
vendor-specific extensions, hence hampering code portability. Functionally, PPM is limited to particle-mesh meth-
ods in 2D and 3D, preventing its use for parameter optimization, image processing, and other higher-dimensional
applications. Most importantly, Fortran uses static memory layout for all data structures, and the PPM API is man-
ually overloaded to a limited set of data types that could be foreseen at design time. This prevents the framework
from being generic to different hardware platforms and also does not allow particles to carry arbitrary objects.
The Sbalzarini group hence started designing a successor of PPM in 2014 in a project termed “OpenFPM” (Open
Framework for Particles and Meshes). OpenFPM is based on the same proven abstractions as PPM [Sba10],
but implemented in C++ using full templating and template metaprogramming (TMP). It is generic to arbitrary-
dimensional spaces and allows particles to carry arbitrary objects and types. The TMP layer, together with a
built-in memory manager, also decouples the semantics of any data structure from its physical memory layout,
hence providing compile-time targeting to different hardware platforms. This is illustrated in the lower stack levels
of Figure 3. Currently, a numerics part for OpenFPM is missing, and also a DSL and development environment
are missing. These are the focus of the present project. Hence, the upper part of the figure shows the envisioned
development environment providing a high-level DSL and advanced editing features to end-users. The code gener-
ator of the DSL emits well-formed and optimized C++ code that links with the library. The new architecture provides
a clearer separation between the DSL language, OpenFPM, and the compile-time targets.

Prof. Ivo Sbalzarini also works on the theory and algorithms for particle methods. This included DC-PSE
(mentioned in Section 1.0.1), providing a unifying theory for collocation methods that is fully consistent for arbitrary
linear differential operators on any distribution of particles. This in particular made it possible for particles to self-
organize at runtime, such as to dynamically adapt their number and spatial distribution to developing simulation
[RSS12]. Recently, this has been extended to anisotropic particles that self-organize, further reducing the number
of particles needed to reach a given solution accuracy [HRS15]. Performance models can predict the computational
cost and accuracy of different schemes and enable auto tuning [SRS12]. Moreover, boundary conditions have
traditionally been a problem in particle methods, which has been alleviated by a general framework to impose
arbitrary boundary conditions directly on particles [FDS13].

Release 2.0  
multi-GPU

http://www.openfpm.mpi-cbg.de
http://www.openfpm.mpi-cbg.de

