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Fast SimulationMonte Carlo 

High Energy Physics Simulation

Simulation of a specific 
detector output interpreted 
as a 3D image (25x25x25 
pixels).

3DGAN

● Convolutional Neural Networks 
● Auxiliary Regression tasks and custom 

loss function
● 73K parameter for Discriminator,  3.5M 

for Generator

Training + Optimization 
using Evolution
Gradient Descent

Generalization

● Weight and topology optimization at 
same time 

● Global instead of local minima
● High parallelizable
● Multi objective optimization 

Q1 2020

Adversarial training and final evaluation (Q1 20):
● Incorporate  Adversarial Training approach
● Determine merits and shortcomings

Q3 2019

Weight and Topology Optimization (Q3 19):
● Computing resource evaluation and 

optimization
● Add more flexibility in defining network
● First comparison to standard approach

● Create a generic tool that can be used to 
simulate different detectors

● Use Evolutionary approach for weight 
and network optimization in one single 
step

● Investigate structural features and patterns 
in Convolutional Neural Network that can 
be exploited for more compact coding into  
chromosome and efficient evolution

Motivation

Q4 2019

3-Dimensional extension (Q4 19)
● Investigate performance for 3D approach

Q2 2019

Initial Prototype (Q2 19):
● Focus on discriminator network
● Reduced data complexity  (2-dimensional)
● Genetic Algorithm Implementation

○ Weights as chromosome
○ Update weights by evolution

Main Idea: We have developed a 3-dimensional Convolutional Generative Adversarial Network (3DGAN) to simulate highly granular calorimeter 
response. Agreement to MC simulation is remarkable[1].  We want to generalize 3DGAN to different detector use-cases and use a Genetic Algorithm 
to perform training and architecture optimization.

Timeline

Chromosome:
● Convolutional Layer:

○ Weights for each filter
○ Activation 

● Dense Layer:
○ Weights
○ Activation

Evolutionary Strategy:

● 1 + λ strategy
○ One parent with  

λ offsprings
● Point Mutation
● Tournament 

selection

Initialization:

● Make n random 
individuals

● Convert genotype 
to phenotype

● Evaluate on batch
● Select Fittest

Per Epoch:

● Mutate parent to 
get offsprings

● Evaluate on next 
batch

● Select Fittest

Repeat for n epochs
Distributed Training:

● Create workers = 
number of offsprings

● Evaluate each 
offspring in parallel

Implementation

Classical Approach
● Parametric, Look up 

tables ,…
● 10x - 100x faster
● ~10% accurate wrt MC

Precise step by step 
modelling

Deep Learning
● Generative Models

○ x10-3 faster
● ~10% accurate wrt MC

Single electromagnetic shower 
in a highly granular calorimeter 

CERN computing Grid :
• 170 centres in 42 countries
● 1 exabyte of storage
● 65k cores @CERN (20% 

WLCG)

Challenges:
● Number of trainable parameters in millions ( for combined 3DGAN Discriminator + 

Generator model)
○ Deep GA [2] has been able to train successfully over four million parameters for reinforcement 

learning tasks taking  4 hours on a desktop or  1 hour on 720 cores∼ ∼
● Can evolutionary approach efficiently use large data ? size up to 40 GB in our case.

○ LEEA [3] implements genetic algorithm evaluated over batches of data
● Adversarial Training of two networks competing with each other
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High Energy Physics relies on Monte Carlo (MC) for different aspects of data analysis. MC simulation implement complex 
computations that, today, result in ~50% of CERN Computing Grid resources. Several alternative approaches are being 
investigated trading some accuracy for speed. Deep Learning approaches resulted in about x10-3 speed-up while retaining 
reasonable agreement (within 10%) with respect to MC [1]. 

https://arxiv.org/abs/1712.06567

	Slide 1

