Evolutionary Convolutional Neural Network for High Energy Physics Detector Simulation

Gul Rukh Khattak^{1,2}, Sofia Vallecorsa¹, Federico Carminati¹, Gul Muhammad Khan² CERN¹UET Peshawar, Pakistan²

Motivation

High Energy Physics relies on Monte Carlo (MC) for different aspects of data analysis. MC simulation implement **complex** computations that, today, result in ~50% of CERN Computing Grid resources. Several alternative approaches are being investigated trading some accuracy for speed. Deep Learning approaches resulted in about x10⁻³ speed-up while retaining reasonable agreement (within 10%) with respect to MC [1].

Main Idea: We have developed a 3-dimensional Convolutional Generative Adversarial Network (3DGAN) to simulate highly granular calorimeter response. Agreement to MC simulation is remarkable [1]. We want to generalize 3DGAN to different detector use-cases and use a Genetic Algorithm to perform **training** and **architecture optimizatio**n.

- Create a **generic** tool that can be used to simulate **different** detectors
- Use **Evolutionary** approach for **weight** and network optimization in one single step
- Investigate structural features and patterns in Convolutional Neural Network that can be exploited for more compact coding into chromosome and efficient evolution

3DGAN

Simulation of a specific detector output interpreted as a 3D image (25x25x25 pixels).

Training + Optimization Generalization using Evolution

- **Convolutional Neural Networks**
- Auxiliary Regression tasks and custom loss function

CERN

qq→ZZ, Zγ'

- 73K parameter for Discriminator, 3.5M for Generator
 - Weight and topology optimization at same time
 - Global instead of local minima

High parallelizable

Multi objective optimization

Timolino

 Reduced data complexity (2-dimensional) Genetic Algorithm Implementation Weights as chromosome Update weights by evolution 		3-Dimensional extension Investigate performance 	 3-Dimensional extension (Q4 19) ● Investigate performance for 3D approach 	
	Q3 2019		Q1 2020	
Q2 2019	 Weight and Topolo Computing reso optimization Add more flexibilit First comparison t 	Q4 2019 ogy Optimization (Q3 19): ource evaluation and ty in defining network to standard approach	Adversarial training and final evaluation (Q1 20 Incorporate Adversarial Training approach Determine merits and shortcomings	

Challenges:

- Number of trainable parameters in millions (for combined 3DGAN Discriminator + **Generator model**)
 - Deep GA [2] has been able to train successfully over four million parameters for reinforcement learning tasks taking ~ 4 hours on a desktop or ~ 1 hour on 720 cores
- Can evolutionary approach efficiently use large data? size up to 40 GB in our case.
 - LEEA [3] implements genetic algorithm evaluated over batches of data
- Adversarial Training of two networks competing with each other

References:

[1] Gul rukh Khattak, Sofia Vallecorsa and federico Carminati. "THREE DIMENSIONAL ENERGY PARAMETRIZED GENERATIVE ADVERSARIAL NETWORKS FOR ELECTROMAGNETIC SHOWER SIMULATION", ICIP 2018. [2] Felipe Petroski Such. et. al. "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning". 2018. <u>arXiv:1712.06567</u> [3] Gregory Morse, Kenneth O. Stanley. "Simple Evolutionary" Optimization Can Rival Stochastic Gradient Descent in Neural Networks". GECCO 2016