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❖ Multi-Hybrid Accelerated Computing ❖ Accelerator in Switch (AiS)

❖ ART on FPGA

Host OS CentOS 7.3

Host Compiler gcc 4.8.5

FPGA 
toolchain

Intel FPGA SDK for OpenCL, 
Intel Quartus Prime Pro
Version 17.0.0 Build 289

Evaluation testbed

lPre-PACS-X (PPX)
Ø PACS-X prototype
Ø CCS, U. Tsukuba
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CPU

NVMe CPU: 
Intel Xeon 
E5-2660 v4 x2 GPU:

NVIDIA P100 x2

FPGA:
BittWare A10PL4

HCA:
Mellanox IB/EDR

QSFP+: 40Gbps x2

IB/EDR: 100Gbps
comp. node

For more detail, please let me 
know after this talk

• Accelerator in Switch (AiS) is a concept proposed by 
Prof. Amano, Keio University, Japan
• It couples communication and computations 

tightly
• FPGAs can act as both of computation 

accelerators and network switches
• FPGA programming cost using Hardware Description 

Language (HDL) is very expensive
• Due to improvement of High Level Synthesis (HLS), 

programming cost of FPGA is decreasing
• No HDL code is required
• Application programmers can program FPGAs

• We consider we can realize AiS system using FPGAs

• Pre-PACS-X (PPX) is a 
test-bed system in 
Center for 
Computational 
Sciences, University of 
Tsukuba
• It is a prototype of 

the next generation 
system of their 
PACS series 
supercomputer

• Each node has 2 
CPUs, 2 GPUs and 2 
FPGAs

• Not only InfiniBand 
network for CPUs 
but also 40GbE 
network for FPGAs
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Inter-FPGA direct network
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FPGA FPGA FPGA

FPGA FPGA FPGA

(only for Albirero nodes)

Inter-FPGA direct network

64 FPGAs on Albireo nodes are 
connected directly as 2D-Torus 
configuration without Ethernet sw.

• Combining goodness of different type of 
accelerators: GPU + FPGA
• GPU is still an essential accelerator for 

simple and large degree of parallelism to 
provide ~10 TFLOPS peak performance

• FPGA is a new type of accelerator for 
application-specific hardware with 
programmability and speeded up based 
on pipelining of calculation

• FPGA is good for external communication 
between them with advanced high speed 
interconnection up to 100Gbps x4chan.

• Next supercomputer “Cygnus” will be deployed
• Test operation starts in April 2019, public 

operation starts in May 2019
• 2x Intel Xeon CPUs, 4x NVIDIA V100 GPUs, 

2x Intel Stratix10 FPGAs
• Deneb: 46 CPU+GPU nodes
• Albireo: 32 CPU+GPU+FPGA nodes 

with 2D-torus dedicated network for 
FPGAs (100Gbpsx4)
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Specification of Cygnus

Target GPU:
NVIDIA Tesla V100

Target FPGA:
Nallatech 520N

❖ OpenCL-enabled GPU-FPGA DMA❖ Inter-FPGA communication
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Proposed method

Traditional method

• The FPGA (OpenCL kernel) 
autonomously performs the DMA-
based data movement (not through 
CPU)

• I/O Channel API is used to control 
the functionality
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#pragma OPENCL EXTENSION cl_intel_channels : enable
channel cldesc_t fpga_dma __attribute__((depth(0))) 

__attribute__((io("chan_fpga_dma")));

typedef struct __attribute__((packed)) cldesc {
ulong src;
ulong dst;
uint id_and_len;

} cldesc_t;

...
cldesc_t desc;

desc.src = PADDR;
desc.dst = (ulong)(&src_array[0]);
desc.id_and_len = id_and_len;
write_channel_intel(fpga_dma, desc);

OpenCL Kernel code
CPU GPU Global 

memory

OpenCL kernel

Descriptor 
Controller

PCIe IP core

External
memory
(DDR)

DMA 
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Setting data

Sending a descriptor to 
the Descriptor Controller

Descriptor definition

Communication latency and bandwidth evaluation

Example code to invoke the DMA

• Accelerated Radiative transfer on grids Oct-Tree 
(ARGOT)  has been developer in Center for 
Computational Sciences, University of Tsukuba
• Authentic Radiative Transfer (ART) method 

is one of algorithms used in ARGOT and 
dominant part (90% or more of 
computation time) of ARGOT program

• ART is ray tracing based algorithm
• problem space is divided 

into meshes and reactions 
are computed on each mesh

• ART method computes radiative intensity 
on each mesh as shows as formula (1)

• Memory access pattern for 
mesh data is varies 
depending on ray’s 
direction
• Memory access pattern 

for mesh data is varies 
depending on ray’s 
direction

• Not suitable for SIMD 
architecture

• Channel over Ethernet (CoE)
• CoE enables OpenCL code communicate with 

other FPGAs on different nodes
• Extending Intel’s channel mechanism to external 

communications
• Pipeline manner: sending/receiving data from/to 

compute pipeline directly

sender(__global float* restrict x, int n) {
for (int i = 0; i < n; i++) {
float v = x[i];
write_channel_intel(simple_out, v);

}
}

sender code on FPGA1
receiver(__global float* restrict x, int n) {
for (int i = 0; i < n; i++) {
float v = read_channel_intel(simple_in);
x[i] = v;

}
}

receiver code on FPGA2CoE
Backends

Lower is Better
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• CoE supports 32bit or 128bit 
width channels
• On every cycle, we can 

send or receive a value 
through a CoE channel

• Pingpong benchmark 
results:
• 950ns min. latency
• 29.77Gbps max. 

throughput
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• Much faster than the 
traditional method
• OpenCL direct comm. vs.

through CPU via IB 
(store-and-forward)

• Himeno Benchmark (3D CFD 
minibench)
• 19-point 3D stencil 
• x3.93 speedup compared 

to 1 FPGA

❖ Future Work
• How FPGA knows GPU computation completion?
• A sophisticated synchronization mechanism is needed

• No one wants to do multilingual programming!! (CUDA, 
OpenCL, etc.)
• needs a comprehensive programming framework enabling 

the programming in a single language (w/ OpenACC)
• Combining inter-FPGA comm. and GPU-FPGA DMA

Item Specification

Peak performance 2.4 PFLOPS DP
(GPU: 2.2 PFLOPS, CPU: 0.2 PFLOPS, FPGA: 0.6 PFLOPS SP)
⇨ enhanced by mixed precision and variable precision on FPGA

# of nodes 78 (32 Albireo (GPU+FPGA) nodes,  46 Deneb (GPU-only) nodes)
⇨ 2 additional nodes will come, in total 80

Memory 192 GiB DDR4-2666/node = 256GB/s, 32GiB x 4 for GPU/node = 
3.6TB/s

CPU / node Intel Xeon Gold (SKL) x2 sockets

GPU / node NVIDIA V100 x4 (PCIe)

FPGA / node Intel Stratix10 x2 (each with 100Gbps x4 links/FPGA and x8 
links/node)

Global File System Lustre, RAID6, 2.5 PB

Interconnection Network Mellanox InfiniBand HDR100 x4 (two cables of HDR200 / node)
4 TB/s aggregated bandwidthj

Programming Language CPU: C, C++, Fortran, OpenMP, GPU: OpenACC, CUDA
FPGA: OpenCL, Verilog HDL

System Vendor NEC

• FPGA design plan
• Router
- For the dedicated network, 

this impl. is mandatory. 
- Forwarding packets to 

destinations

• User Logic
- OpenCL kernel runs here.
- Inter-FPGA comm. can be 

controlled from OpenCL 
kernel. 

• SL3
- SerialLite III : Intel FPGA IP
- Including transceiver 

modules  for Inter-FPGA 
data transfer.

- Users don’t need to care


