
Taisuke Boku(1, Ryohei Kobayashi(1, Norihisa Fujita(1, Hideharu Amano(2, Kentaro Sano(3,
Toshihiro Hanawa(4, Yoshiki Yamaguchi(1

Cygnus: A Multi-Hybrid Supercomputing Platform with GPUs and FPGAs

ACKNOWLEDGEMENT

1: University of Tsukuba, Japan
2: Keio University, Japan

3: RIKEN Center for Computational Science, Japan
4: The University of Tokyo, Japan

❖ Multi-Hybrid Accelerated Computing ❖ Accelerator in Switch (AiS)

❖ ART on FPGA

Host OS CentOS 7.3

Host Compiler gcc 4.8.5

FPGA
toolchain

Intel FPGA SDK for OpenCL,
Intel Quartus Prime Pro
Version 17.0.0 Build 289

Evaluation testbed

lPre-PACS-X (PPX)
Ø PACS-X prototype
Ø CCS, U. Tsukuba

20

A10PL4 P100

IB HCA
CPU

NVMe CPU:
Intel Xeon
E5-2660 v4 x2 GPU:

NVIDIA P100 x2

FPGA:
BittWare A10PL4

HCA:
Mellanox IB/EDR

QSFP+: 40Gbps x2

IB/EDR: 100Gbps
comp. node

For more detail, please let me
know after this talk

• Accelerator in Switch (AiS) is a concept proposed by
Prof. Amano, Keio University, Japan
• It couples communication and computations

tightly
• FPGAs can act as both of computation

accelerators and network switches
• FPGA programming cost using Hardware Description

Language (HDL) is very expensive
• Due to improvement of High Level Synthesis (HLS),

programming cost of FPGA is decreasing
• No HDL code is required
• Application programmers can program FPGAs

• We consider we can realize AiS system using FPGAs

• Pre-PACS-X (PPX) is a
test-bed system in
Center for
Computational
Sciences, University of
Tsukuba
• It is a prototype of

the next generation
system of their
PACS series
supercomputer

• Each node has 2
CPUs, 2 GPUs and 2
FPGAs

• Not only InfiniBand
network for CPUs
but also 40GbE
network for FPGAs

0

200

400

600

800

1000

1200

1400

(16,16,16) (32,32,32) (64,64,64) (128,128,128)

Pe
rf

or
m

an
ce

 [M
 m

es
h/

s]

mesh size

CPU(14C)
CPU(28C)
P100(x1)
FPGA

be
tte
r

CPU

CPU

GPU

IB

FPGA

ppx01

ppx02

ppx03

ppx04

ppx05

ppx00

In
fin

ib
an

d
Sw

itc
h

40
/1

00
G

Et
he

rn
et

 S
w

itc
h

This work was supported in part by MEXT as “Next Generation High-Performance Computing Infrastructures and Applications R&D Program” (Development of Computing- Communication
Unified Supercomputer in Next Generation). This research was also supported (in part) by Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, and JSPS KAKENHI
Grant Number 18H03246. We also thank Intel University Program for providing us both of hardware and software.

CPU

PCIe network (switch)

G
P
U

G
P
U

FPGA

HCA HCA

Inter-FPGA
direct network
(100Gbps x4)

Network switch
(100Gbps x2)

CPU

PCIe network (switch)

G
P
U

G
P
U

FPGA

HCA HCA

Inter-FPGA
direct network
(100Gbps x4)

SINGLE
NODE
(with FPGA)

Network switch
(100Gbps x2)

comp.
node

…

IB EDR Network (100Gbps x4/node)

Ordinary inter-node communication channel for CPU and GPU, but
they can also request it to FPGA

comp.
node

comp.
node

…comp.
node

Deneb nodes Albireo nodes

comp.
node

comp.
node

Ordinary inter-node network (CPU, GPU) by IB EDR
With 4-ports x full bisection b/w

…
…

Inter-FPGA direct network

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA

(only for Albirero nodes)

Inter-FPGA direct network

64 FPGAs on Albireo nodes are
connected directly as 2D-Torus
configuration without Ethernet sw.

• Combining goodness of different type of
accelerators: GPU + FPGA
• GPU is still an essential accelerator for

simple and large degree of parallelism to
provide ~10 TFLOPS peak performance

• FPGA is a new type of accelerator for
application-specific hardware with
programmability and speeded up based
on pipelining of calculation

• FPGA is good for external communication
between them with advanced high speed
interconnection up to 100Gbps x4chan.

• Next supercomputer “Cygnus” will be deployed
• Test operation starts in April 2019, public

operation starts in May 2019
• 2x Intel Xeon CPUs, 4x NVIDIA V100 GPUs,

2x Intel Stratix10 FPGAs
• Deneb: 46 CPU+GPU nodes
• Albireo: 32 CPU+GPU+FPGA nodes

with 2D-torus dedicated network for
FPGAs (100Gbpsx4)

CPU

PCIe network (switch)

G
P
U

G
P
U

FPGA

HCA HCA

Inter-FPGA
direct network
(100Gbps x4)

Network switch
(100Gbps x2)

CPU

PCIe network (switch)

G
P
U

G
P
U

FPGA

HCA HCA

Inter-FPGA
direct network
(100Gbps x4)

SINGLE
NODE
(without FPGA)

Network switch
(100Gbps x2)

Albireo node (x32) Deneb node (x46)
Specification of Cygnus

Target GPU:
NVIDIA Tesla V100

Target FPGA:
Nallatech 520N

❖ OpenCL-enabled GPU-FPGA DMA❖ Inter-FPGA communication

���

�������

PCIe

���0 ����

����	
��

Comp. node

Proposed method

Traditional method

• The FPGA (OpenCL kernel)
autonomously performs the DMA-
based data movement (not through
CPU)

• I/O Channel API is used to control
the functionality

0

5

10

15

20

25

Traditional Proposed Traditional Proposed

FPGA ← GPU FPGA → GPU

La
te
nc
y
[μ
s]

OpenCL API
Overhead
cudaMemcpy

1.45 0.59

20
17

8.6
C → F

7.1
G → C

11
F → C

7.8
C → G

‘C’ stands for “CPU”
‘G’ stands for “GPU”
‘F’ stands for “FPGA”

0

1

2

3

4

5

6

7

8

1 16 256 4096 65536 1048576 16777216 268435456

Ba
nd
w
id
th
 [G
B/
s]

Size [Bytes]

Traditional (FPGA ← GPU) Traditional (FPGA → GPU)

Proposed (FPGA ← GPU) Proposed (FPGA → GPU)

Hi
gh
er
 is
 B
et
te
rLower is Better

#pragma OPENCL EXTENSION cl_intel_channels : enable
channel cldesc_t fpga_dma __attribute__((depth(0)))

__attribute__((io("chan_fpga_dma")));

typedef struct __attribute__((packed)) cldesc {
ulong src;
ulong dst;
uint id_and_len;

} cldesc_t;

...
cldesc_t desc;

desc.src = PADDR;
desc.dst = (ulong)(&src_array[0]);
desc.id_and_len = id_and_len;
write_channel_intel(fpga_dma, desc);

OpenCL Kernel code
CPU GPU Global

memory

OpenCL kernel

Descriptor
Controller

PCIe IP core

External
memory
(DDR)

DMA
controller

�

FPGA

�

� �

�

PCIe Controller
�

�

Setting data

Sending a descriptor to
the Descriptor Controller

Descriptor definition

Communication latency and bandwidth evaluation

Example code to invoke the DMA

• Accelerated Radiative transfer on grids Oct-Tree
(ARGOT) has been developer in Center for
Computational Sciences, University of Tsukuba
• Authentic Radiative Transfer (ART) method

is one of algorithms used in ARGOT and
dominant part (90% or more of
computation time) of ARGOT program

• ART is ray tracing based algorithm
• problem space is divided

into meshes and reactions
are computed on each mesh

• ART method computes radiative intensity
on each mesh as shows as formula (1)

• Memory access pattern for
mesh data is varies
depending on ray’s
direction
• Memory access pattern

for mesh data is varies
depending on ray’s
direction

• Not suitable for SIMD
architecture

• Channel over Ethernet (CoE)
• CoE enables OpenCL code communicate with

other FPGAs on different nodes
• Extending Intel’s channel mechanism to external

communications
• Pipeline manner: sending/receiving data from/to

compute pipeline directly

sender(__global float* restrict x, int n) {
for (int i = 0; i < n; i++) {
float v = x[i];
write_channel_intel(simple_out, v);

}
}

sender code on FPGA1
receiver(__global float* restrict x, int n) {
for (int i = 0; i < n; i++) {
float v = read_channel_intel(simple_in);
x[i] = v;

}
}

receiver code on FPGA2CoE
Backends

Lower is Better

Hi
gh
er
 is
 B
et
te
r

• CoE supports 32bit or 128bit
width channels
• On every cycle, we can

send or receive a value
through a CoE channel

• Pingpong benchmark
results:
• 950ns min. latency
• 29.77Gbps max.

throughput

Hi
gh
er
 is
 B
et
te
r

Hi
gh
er
 is
 B
et
te
r

• Much faster than the
traditional method
• OpenCL direct comm. vs.

through CPU via IB
(store-and-forward)

• Himeno Benchmark (3D CFD
minibench)
• 19-point 3D stencil
• x3.93 speedup compared

to 1 FPGA

❖ Future Work
• How FPGA knows GPU computation completion?
• A sophisticated synchronization mechanism is needed

• No one wants to do multilingual programming!! (CUDA,
OpenCL, etc.)
• needs a comprehensive programming framework enabling

the programming in a single language (w/ OpenACC)
• Combining inter-FPGA comm. and GPU-FPGA DMA

Item Specification

Peak performance 2.4 PFLOPS DP
(GPU: 2.2 PFLOPS, CPU: 0.2 PFLOPS, FPGA: 0.6 PFLOPS SP)
⇨ enhanced by mixed precision and variable precision on FPGA

of nodes 78 (32 Albireo (GPU+FPGA) nodes, 46 Deneb (GPU-only) nodes)
⇨ 2 additional nodes will come, in total 80

Memory 192 GiB DDR4-2666/node = 256GB/s, 32GiB x 4 for GPU/node =
3.6TB/s

CPU / node Intel Xeon Gold (SKL) x2 sockets

GPU / node NVIDIA V100 x4 (PCIe)

FPGA / node Intel Stratix10 x2 (each with 100Gbps x4 links/FPGA and x8
links/node)

Global File System Lustre, RAID6, 2.5 PB

Interconnection Network Mellanox InfiniBand HDR100 x4 (two cables of HDR200 / node)
4 TB/s aggregated bandwidthj

Programming Language CPU: C, C++, Fortran, OpenMP, GPU: OpenACC, CUDA
FPGA: OpenCL, Verilog HDL

System Vendor NEC

• FPGA design plan
• Router
- For the dedicated network,

this impl. is mandatory.
- Forwarding packets to

destinations

• User Logic
- OpenCL kernel runs here.
- Inter-FPGA comm. can be

controlled from OpenCL
kernel.

• SL3
- SerialLite III : Intel FPGA IP
- Including transceiver

modules for Inter-FPGA
data transfer.

- Users don’t need to care

